LRQMM

Fitting Linear Quantile Regression Mixed Models

Fit a quantile regression mixed model using a sparse implementation of the Frisch-Newton interior-point algorithm as described in Portnoy and Koenker (1977, Statistical Science) <https://www.jstor.org/stable/2246217>.

Total

0

Last month

0

Last week

0

Average per day

0

Daily downloads

Total downloads

Description file content

Package
LRQMM
Type
Package
Title
Fitting Linear Quantile Regression Mixed Models
Version
1.1.11
Author
Sayyed Reza Alavian[aut,cre] Majid Sarmad[ths] Mehdi Jabbari Nooghabi[ths] Hani Rezaee[ctb] Saeed Zerehdaran[ctb] Ferdowsi University Of Mashhad [cph]
Maintainer
Sayyed Reza Alavian
Description
Fit a quantile regression mixed model using a sparse implementation of the Frisch-Newton interior-point algorithm as described in Portnoy and Koenker (1977, Statistical Science) .
License
GPL-2 | GPL-3
Encoding
UTF-8
LazyData
true
Depends
R (>= 3.5.0)
Imports
GeneticsPed, SparseM, MASS, quantreg, Matrix, MasterBayes, MCMCglmm
NeedsCompilation
no
Packaged
2019-11-30 08:11:42 UTC; REZA
Repository
CRAN
Date/Publication
2019-11-30 08:40:02 UTC

install.packages('LRQMM')

1.1.11

15 days ago

Sayyed Reza Alavian

GPL-2 | GPL-3

Depends on

R (>= 3.5.0)

Imports

GeneticsPed, SparseM, MASS, quantreg, Matrix, MasterBayes, MCMCglmm

Discussions