LassoSIR

Sparsed Sliced Inverse Regression via Lasso

Estimate the sufficient dimension reduction space using sparsed sliced inverse regression via Lasso (Lasso-SIR) introduced in Lin, Zhao, and Liu (2017) <arxiv:1611.06655>. The Lasso-SIR is consistent and achieve the optimal convergence rate under certain sparsity conditions for the multiple index models.

Total

1,858

Last month

293

Last week

57

Average per day

10

Daily downloads

Total downloads

Description file content

Package
LassoSIR
Type
Package
Title
Sparsed Sliced Inverse Regression via Lasso
Version
0.1.1
Date
2017-12-06
Author
Zhigen Zhao, Qian Lin, Jun Liu
Maintainer
Zhigen Zhao
Description
Estimate the sufficient dimension reduction space using sparsed sliced inverse regression via Lasso (Lasso-SIR) introduced in Lin, Zhao, and Liu (2017) . The Lasso-SIR is consistent and achieve the optimal convergence rate under certain sparsity conditions for the multiple index models.
License
GPL-3
Imports
glmnet, graphics, stats
NeedsCompilation
no
Packaged
2017-12-06 16:40:52 UTC; zhaozhg
Repository
CRAN
Date/Publication
2017-12-06 16:55:39 UTC

install.packages('LassoSIR')

0.1.1

10 months ago

Zhigen Zhao

GPL-3

Imports

glmnet, graphics, stats

Discussions