kde1d

Univariate Kernel Density Estimation

Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) <arXiv:1303.4121>, Geenens and Wang (2018) <arXiv:1602.04862>, Nagler (2018a) <arXiv:1704.07457>, Nagler (2018b) <arXiv:1705.05431>.

Total

3,778

Last month

371

Last week

59

Average per day

12

Daily downloads

Total downloads

Description file content

Package
kde1d
Type
Package
Title
Univariate Kernel Density Estimation
Version
0.2.1
Description
Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. See Geenens (2014) , Geenens and Wang (2018) , Nagler (2018a) , Nagler (2018b) .
License
MIT + file LICENSE
Encoding
UTF-8
LazyData
true
LinkingTo
BH, Rcpp, RcppEigen
Imports
cctools, graphics, Rcpp, qrng, stats, utils
RoxygenNote
6.0.1
Suggests
testthat
URL
BugReports
https://github.com/tnagler/kde1d/issues
SystemRequirements
C++11
NeedsCompilation
yes
Packaged
2018-05-28 14:45:04 UTC; n5
Author
Thomas Nagler [aut, cre], Thibault Vatter [aut]
Maintainer
Thomas Nagler
Repository
CRAN
Date/Publication
2018-05-28 22:13:28 UTC

install.packages('kde1d')

0.2.1

6 months ago

https://github.com/tnagler/kde1d

Thomas Nagler

MIT + file LICENSE

Imports

cctools, graphics, Rcpp, qrng, stats, utils

Suggests

testthat

Discussions