kmed

Distance-Based k-Medoids

Algorithms of distance-based k-medoids clustering: simple and fast k-medoids (Park and Jun, 2009) <doi:10.1016/j.eswa.2008.01.039>, ranked k-medoids (Zadegan et al., 2013) <doi:10.1016/j.knosys.2012.10.012>, and step k-medoids (Yu et al., 2018) <doi:10.1016/j.eswa.2017.09.052>. Calculate distances for mixed variable data such as Gower (1971) <doi:10.2307/2528823>, Wishart (2003) <doi:10.1007/978-3-642-55721-7_23>, Podani (1999) <doi:10.2307/1224438>, Huang (1997) <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.9984&rep=rep1&type=pdf>, Harikumar and PV (2015) <doi:10.1016/j.procs.2015.10.077>, and Ahmad and Dey (2007) <doi:10.1016/j.datak.2007.03.016>. Cluster validation applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages.

Total

1,913

Last month

707

Last week

73

Average per day

24

Daily downloads

Total downloads

Description file content

Package
kmed
Type
Package
Title
Distance-Based k-Medoids
Version
0.1.0
Date
2018-08-07
Author
Weksi Budiaji
Maintainer
Weksi Budiaji
Description
Algorithms of distance-based k-medoids clustering: simple and fast k-medoids (Park and Jun, 2009) , ranked k-medoids (Zadegan et al., 2013) , and step k-medoids (Yu et al., 2018) . Calculate distances for mixed variable data such as Gower (1971) , Wishart (2003) , Podani (1999) , Huang (1997) , Harikumar and PV (2015) , and Ahmad and Dey (2007) . Cluster validation applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages.
Depends
R (>= 2.10)
License
GPL-3
LazyData
TRUE
RoxygenNote
6.0.1
Suggests
knitr, rmarkdown
VignetteBuilder
knitr
Imports
ggplot2
NeedsCompilation
no
Packaged
2018-08-07 07:42:55 UTC; Weksi
Repository
CRAN
Date/Publication
2018-08-07 10:10:02 UTC

install.packages('kmed')

0.1.0

10 days ago

Weksi Budiaji

GPL-3

Depends on

R (>= 2.10)

Imports

ggplot2

Suggests

knitr, rmarkdown

Discussions