kmed

Distance-Based k-Medoids

A simple and fast distance-based k-medoids clustering algorithm from Park and Jun (2009) <doi:10.1016/j.eswa.2008.01.039>. Calculate distances for mixed variable data such as Gower (1971) <doi:10.2307/2528823>, Wishart (2003) <doi:10.1007/978-3-642-55721-7_23>, Podani (1999) <doi:10.2307/1224438>, Huang (1997) <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.9984&rep=rep1&type=pdf>, and Harikumar and PV (2015) <doi:10.1016/j.procs.2015.10.077>. Cluster validation applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages.

Total

774

Last month

324

Last week

85

Average per day

11

Daily downloads

Total downloads

Description file content

Package
kmed
Type
Package
Title
Distance-Based k-Medoids
Version
0.0.1
Date
2018-02-09
Author
Weksi Budiaji
Maintainer
Weksi Budiaji
Description
A simple and fast distance-based k-medoids clustering algorithm from Park and Jun (2009) . Calculate distances for mixed variable data such as Gower (1971) , Wishart (2003) , Podani (1999) , Huang (1997) , and Harikumar and PV (2015) . Cluster validation applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages.
Depends
R (>= 2.10)
License
GPL-3
LazyData
TRUE
RoxygenNote
6.0.1
Suggests
knitr, rmarkdown
VignetteBuilder
knitr
Imports
ggplot2
NeedsCompilation
no
Packaged
2018-02-09 19:51:10 UTC; Weksi
Repository
CRAN
Date/Publication
2018-02-12 10:12:53 UTC

install.packages('kmed')

0.0.1

3 months ago

Weksi Budiaji

GPL-3

Depends on

R (>= 2.10)

Imports

ggplot2

Suggests

knitr, rmarkdown

Discussions