recipes

Preprocessing Tools to Create Design Matrices

An extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.

Total

809,713

Last month

61,306

Last week

20,493

Average per day

2,044

Daily downloads

Total downloads

Description file content

Package
recipes
Title
Preprocessing Tools to Create Design Matrices
Version
0.1.3
Description
An extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.
URL
BugReports
https://github.com/topepo/recipes/issues
Depends
R (>= 3.1), dplyr, broom
Imports
tibble, stats, ipred, dimRed (>= 0.1.0), lubridate, timeDate, ddalpha, purrr (>= 0.2.3), rlang (>= 0.1.1), gower, RcppRoll, tidyselect (>= 0.1.1), magrittr, Matrix, tidyr, pls
Suggests
testthat, rpart, kernlab, fastICA, RANN, igraph, knitr, rsample (>= 0.0.2), ggplot2, rmarkdown, covr
License
GPL-2
VignetteBuilder
knitr
Encoding
UTF-8
LazyData
true
RoxygenNote
6.0.1
NeedsCompilation
no
Packaged
2018-06-16 02:03:53 UTC; max
Author
Max Kuhn [aut, cre], Hadley Wickham [aut], RStudio [cph]
Maintainer
Max Kuhn
Repository
CRAN
Date/Publication
2018-06-16 19:32:15 UTC

install.packages('recipes')

0.1.3

3 months ago

https://github.com/topepo/recipes

Max Kuhn

GPL-2

Depends on

R (>= 3.1), dplyr, broom

Imports

tibble, stats, ipred, dimRed (>= 0.1.0), lubridate, timeDate, ddalpha, purrr (>= 0.2.3), rlang (>= 0.1.1), gower, RcppRoll, tidyselect (>= 0.1.1), magrittr, Matrix, tidyr, pls

Suggests

testthat, rpart, kernlab, fastICA, RANN, igraph, knitr, rsample (>= 0.0.2), ggplot2, rmarkdown, covr

Discussions